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A b s t r a c t  

The shiß operator matrix (SOM) method is discussed. We show that in the 
thermodynamic limit, the largest eigenvalue of the SOM determines the grand 
canonical partition function for situations when simple, nearest-neighbor and 
next-nearest neighbor interacting particles are distributed on an M×N lattice space. 
In addition, we present a method for calculating the appropriate shift operator 
matrices. 

1. I n t r o d u c t i o n  

The shift operator matrix (SOM) method has its origin in the work of  Fowler 
and Rushbrooke [1 ] ,  in which they determine the occupational degeneracy for dumb- 
bells distributed on lattice späces of  various stmcture and dimensionality. More 
recently, the SOM method has been used successfully to treat a wide range of  lattice 

statistics problems. 
The SOM method,  in one form or another, has been employed to determine 

the occupational degeneracy for the following situations: 

(1) dumbbells on partially filled rectangular, two-dimensional lattices [ 2 - 5 ]  ; 
(2) trimers on a partially filled rectangular 3 x N  lattice [6] ; 
(3) dumbbells on a partially filled rectangular three-dimensional lättice [7,8] ; 
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(4) dumbbells on saturated rectangular two-dimensional lattices [9] ; 
(5) X-bell particles on a saturated rectangular X x N  lattice [10]; 
(6) dumbbells on partially filled triangular, hexagonal, honeycomb and 

Kagomé lattices [11 - 14] ; 
(7) variously-shaped particles (" tee" ,  "ell" and trimer) on partially filled 

rectangular 2 x N lattice spaces [ 15 ]. 

In addition, the SOM method has been used to obtain the composite nearest- 
neighbor degeneracy for simple particles [ 1 6 - 1 8 ]  (that occupy a single site) and for 
interacting dumbbells [ 19] on a 2 x N lattice. 

Phares et al. have considered the problems of decoupling [20] and solving 
[ 2 1 - 2 3 ]  (using combinatoric functions) the linear recursions that arise when the 
SOM method is employed. 

The thermodynamic and statistical consequences of the SOM technique, 
involving the entropy, isothermal compressibility, specific heat and adsorption for 
rectangular lattices have also been discussed in the literature [24,25].  The SOM 
method has also led to an exact determination of the occupied nearest-neighbor pair 
density on 2 x N  lattices [26]. 

Recently, George et al. [27] have used the nearest-neighbor degeneracy, 
obtained by the SOM method [25], to calculate the heat capacity of submonolayer 
films of Ne, At, and Xe on graphite for several values of coverage. They obtain critical 
temperature values which are in very good agreement with experimental data. 

As it now stands, the SOM method suffers from two deficiencies: 

(1) Even for relatively narrow lattice spaces, the effort necessary to constmct 
the shift operator matrix is formidable. 

(2) After the SOM has been obtained, the grand canonical partition function, 
i.e. its largest eigenvalue, cannot be readily determined. 

In some ways, the SOM method is similar to the so-called transfer matrix 
method [28,29].  The SOM method,  however, has several advantages: 

(1) It is more straightforward to detemüne the elements of the matrices 
involved. 

(2) There is a more obvious physical/statistical interpretation of the elements 
of the SOM. 

(3) Given the size and dimensions of the lattice, the number of "particles" 
and the numbers of  the various kinds of nearest-neighbor pairs, the related 
degeneracies can be determined explicitly. 

(4) Because the method yields an exact recursion for the basic degeneracy, 
all the moments  of the statistics can be computed. Specifically, the dis- 
persion for the expectation of any variable of interest can be calculated 
readily for finite spaces. 
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There is a large body of  related work on this monomeric model. Although we 
have couched the present article in terms of vacancy/occupafion of lattice sites and 
the associated nearest-neighbor pairs, it should be pointed out that this is equivalent 
to the Ising model in a magnetic field, and to the treatment of binary alloys [ 3 0 - 3 4 ] .  

In the next section, we will show that in the thermodynamic limit the grand 
canonical partition function (and, hence, all the thermodynamics) are contained in 
the largest eigenvalue of the SOM. We will also present a method by which one can 
readily determine the SOM for simple, interacting particles distributed on a rectangular 
Mx N lattice. 

2. T h e  Shi f t  O p e r a t o r  Mat r ix  (SOM) m e t h o d  

We consider indistinguishable, simple particles (which occupy a sinne lattice 
site) distributed on a rectangular lattice space. The particles on the lattice are assumed 
to interact with their nearest neighbors (see double lines in fig. 1) and their next 
nearest neighbors (see diagonal lines in fig. 1). 

c¢ 

o,  o 
"o 

O 

"o 

Fig. 1. In this figure, the occupied nearest-neighbor pairs are shown by 
a double line; the occupied next  nearest neighbor by a single line. The 
vacant and mixed nearest- and next  nearest-neighbor pairs are not  shown. 

To determine the composite nearest- and next-nearest neighbor degeneracy 
by the SOM method, we first treat a l x N  lattice and define an al(N)-space (see 
fig. 2) in which the site on the left-hand side, i.e. the Nth site, is vacant; and an o~2 (N)- 
space to be a 1 x N  lattice in which the Nth site is occupied. (The occupation of the 
remaining N - 1 sites is not specified.) A1 (N, q, 1 n 11,1 noo, 2n 11,2noo) is the number 
of ways of  arranging q particles on an al (N)-space in such a way so as to create ln~ 
occupied nearest-neighbor pairs, lnoo vacant nearest-neighbor pairs and 2n ~ ~ occupied 
next nearest-neighbor pairs, as well as 2 noo vacant next nearest-neighbor pairs. 

Because N -  1 is the number of  separations between sites on a 1 x N  lattice, it 
is also the total number of nearest-neighbor pairs, i.e., 

N -  1 -- l n l l  + 1nol + lnoo • (1) 
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C~l(N) E l  I I I I/il I I I I I I 

c~2(N) I°1 I I I IIll I I I I I I 

I' N ] 
Fig. 2, These figures define the c~~ (N) and «2 (N) spaces that are required 
for the decomposition of the composite degeneracies A~ and A 2. It is 
understood that the remaining N -  1 sites may or may not be occupied. 

I 
I 
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I 171 I It~-]--] AI[N, q, ln11, lnoo, 2n11, 2noo] 

I I I I I ~ ]  : AI[N-1, q, ln11, lnoo-1, 2n11, 2noo] 

I IoI  I l~ f f - - ] - ]  + A2[N'I, q, in11, Inoo, 2n11, 2noo] 

(a) 

IoI?1 1 I ]n~---J A2[N,q, ,n,, , lnoo, 2nl,,2noo] 
I 

I 

IOI I 1 I t ~ ' [ ~  = AI[N-1, q-l, 1nl l ,  lnoo, 2n11,2noo] 
I 
I 
I 
I 

I o l o l  I I t lT ' [ -- I .  A2[N-1, q-l, ln11-1, lnoo, 2n11, 2noo] 
I 

1 
, (b )  

Fig. 3. This figure shows the decomposition 
of the composite degeneracies A~ and A 2. 
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(Here, we do not distinguish between 0-1 and 1-0 nearest-neighbor pairs.) Because 
next nearest-neighbor pairs are defined by the diagonal lines of fig. 1, 2n11,2nol and 
2noo are assumed to be zero for a 1 x N  lattice. 

In addition, for a 2 x N  lattice, 2(N - 1) is the total number of next nearest- 
neighbor pairs, i.e., 

2(N- 1) = 2/'/11 + 2//01 + 2/ /00 - (2) 

Thus, the argument of A1 implies that lnol and 2//Ol, the numbers of mixed 
nearest- and next nearest-neighbor pairs are also prescribed. This can be extended 
for an M x N  rectangular lattice to 2 N M -  N -  M = lnoo + lnol + 1nix and 
2 N M -  2 N -  2M = 2noo + 2nol + 2n11, again showing that lnol and 2//ol are pre- 
scribed once N, M, lnoo, ln11,2noo,  2nll  are given. Similarly, A2 [N, q, 1//11,1//oo, 
2n11, 2noo] is the multiplicity of arrangements for q particles on an a2(N)-space, 
when ln11, lnoo, 2nll  and 2noo are prescribed. 

By enquiring about the state of occupation of  the ( N -  1)th site [see fig. 3(a)], 
we can write : 

A 1 [ A ~ q ,  1 / /11 ,  lnoo,2n11,2noo] 

= A 1 [ . / V -  1,q, ln11, lnoo - 1 ,2nxl ,2noo]  

+ A 2 [ N -  1,q, ln l l , lnoo ,2nl l ,2noo]  (3) 

and from fig. 3(b): 

A2 [N, q, ln11, lnoo, 2n11, 2//00] 

= A1 [ N -  1 , q -  1, 1//11, 1HO0, 2//11, 2noo] 

+ A2 [ N -  1 , q -  1, l n l l  -- 1, l n o o ,  2 n i l ,  2noo] . (4) 

If we define a next nearest-neighbor pair to be along a diagonal (see fig. 1) 
then, in this sense, a 1 x N  lattice cannot have next nearest-neighbor pairs. Conse- 
quently, 2nll  and 2//o0 are not needed in eqs. (3) and (4). 

Equations (3) and (4) may be represented as 

R (~ 1)(A1): (A1), 
S ST A2 A2 

(s) 

where R, S, T and U are shift operators that reduce by one the quantities N, q, 1//11 
and x noo, respectively, i.e., 
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Rr s s T t UUA1 [N, q, ln11, lnoo] 

= A1 [ N -  r, q - s, l n l l  - t, 1/~100 - -  U]  . ( 6 )  

Equation (5) may be written as 

Q 1 A  = R - a A  , (7) 

in which 

o~: (~ , ; ) : (ò ;1(1 ~ ;/ ~~~ 
Thus, we see in eq. (8) that the matrix Q1, the shift operator matrix, can be 

decomposed into a particle matrix (in S only) and a nearest-neighbor interaction 
matrix (in U and T only). 

As an example of the utility of the SOM method, we will use the foregoing 
results to obtain the grand canonical partition function for simple, indistinguishable, 
nearest-neighbor interacting particles distributed on a l x N  lattice space. Equation (5) 
may also be written 

R S  R S T -  1 A2 

For eq. (9) to have a non-trivial solution, the determinant of the 2 x 2 matrix 
should annihilate the solution space; thus 

[1 - R U -  R S T -  R 2 S +  R2STU]AI  = 0, (10) 

which yields the desired recursion 

Aa[N ,q ,n~~ ,noo]  = A ~ [ N -  1,q, nal,  n o o -  t] 

+ A I [ N -  1 , q -  1 , n 1 1 -  1,noo] 

+ A I [ N -  2, q -  1 ,n l l ,  noo] 

- A I [ N - 2 ,  q -  1,n11- 1,noo- 1], (11) 

where the pre-subscript 1 on the n's has been dropped. 
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A2 IN, q, n i l ,  no0] also satisfies the recursion specified by eq. (10). The only 
difference between A1 and A: is to be found in their respective initial conditions. 
Because both A1 and A2 satisfy the same recursion, it must be a characteristic of the 
particle-lattice system. Thus, we conclude that A, the total degeneracy, satisfies the 
recursion given by equating to zero the determinant of  the 2 x 2 matrix in eq. (9). 

The initial conditions for A can be written with the understanding that 
A[N, q, n11, no0] vanishes if N < 1 or if q, n11, noo < O. A[N, q, nzl, noo] will 
also vanish if 

o r  

o r  

q > N  

ni l  > q -  1 

noo > N -  q -  1. 

Then the initial conditions are 

A [ 1 , 0 , 0 , 0 ]  = 1, A [ 1 , 1 , 0 , 0 ]  = 1, A [ 2 , 0 , 0 , 0 1  = 0, 

A [ 2 , 1 , 0 , 0 1  = 2, A [ 2 , 2 , 1 , 0 ]  = 1. 

With eq. (11), we can calculate fN, q(X, y), the canonical partition (generating) 
function as 

/N,q(X,y) =-- )_~ A[N,q,  nll ,noo] xn~~y n°° 
Flll» nO0 

= y f N _ l . q ( X , y )  + x f N _ l , q _ l ( X , y  ) 

+ . t ' N _ 2 , q _ l ( x , y )  - X Y f N _ Œ , q _ l ( x , y ) ,  (12) 

with the initial conditions 

f N, 0 (X, 

fN, 1 (X' 

fl,o (x, 

&x (x, 

Y) = YfN-I ,0  (x' y) 

y) = y fN_a , l ( x , y )  + fN_2,0(x ,y)  

y) = 1, f l , z ( x , y )  = 1, 

y )  = 2, f 2 , 2 ( x , y )  = x .  

N ~ > 2  

N > ~ 3  

(13) 

In eqs. (12) and (13), we adopt the convention that fÆ, q(X, y)  = 0 if q < 0 or if 

q > N .  
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The grand canonical partition (bivariate generating) function is now written as 

N 

gN(x,Y,  z) -- Z & q ( x , y ) z q  
q=O 

= ( y  + z x ) g N _ x ( x , y ,  z)  + z(1 - x y ) g N _ z ( x , y ,  Z) (14) 

o r  

g N + z ( x , y , z )  = ( y + z x ) g N + I ( x , y , z )  + Z [ 1 - - x y ] g N ( X , y , Z  ) ,  (15) 

with the initial conditions 

g l ( x , y , z )  = 1 + z (16a) 

g 2 ( x , y , z )  = y + 2z  + x z  ~ . (16b) 

To obtain an explicit relation for gN(x ,  y ,  z), we form the polynomials (super 
grand canonical partition function) 

oo 

h ( x , y , z ,  7~) ~-~ Z gN(X,.,V,Z)?~ N 
N = I  

r(r/) 
= r/ , ( 1 7 )  

s(n) 

where 

and 

r(n) =- 

s(n) =- 

[1 - r l (y  + xz)]  gx + tig2 

1 - r l ( y  + x z )  - r / = z ( 1  - x y ) .  

We note that r(r~) depends on the initial conditions and s(r~) is the determinant 
of  the 2 x 2 matrix in eq. (9), where 

R - + B ,  S - + z ,  T-+ x, U-+ y . 

From 

gN (x, y,  z) - 1 ONh n = 
N! a~?N 
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and using the partial fraction expansion of h(x,  y, z, 7/), we obtain 

2 

gN(X'Y' Z) = Z ~7/;N, 
] = 1  

(18) 

where the cj's are given by 

C. 
1 

_ r(7/) 

s'(7/) rl = r~j 
(18a) 

in which the 7/j's are the roots of the polynomial s(7/). 
In the limit as N ~ oo 

In gN -~ -- N l n  7/1'  (19) 

w h e r e  7/1 is the smallest root of  s(7/). 
Rearranging eq. (5), we have 

S S T -  R -  1 A2 
(20) 

which shows that R-1 is an eigenvalue of the SOM. Thus, 7/T1 is the largest eigenvalue 
of  Q1 (expressed in terms of the activities x, y and z). 

If one wishes to work within some other ensemble, e.g. the isothermal-isobaric 
ensemble [27], then s(7/) should be written as a polynomial in z, in which the co- 
efficients of the powers of z are functions of x, y, and 7/. 

In the foregoing discussion, we have attempted to demonstrate the utility of 
the S0M and its relation to the grand canonical partition function. In the remainder 
of the paper, therefore, we will concentrate out attention on the S0M and the manner 
by which its elements may be determined for two-dimensional lattices and for nearest- 
as well as next nearest-neighbor interacting particles. 

3. E x t e n s i o n  to  M x N lat t ices  

We first constmct a 2 x N  lattice by uniting two l x N  lattices and initially 
allowing neither nearest- nor next nearest-neighbor interaction between the two rows. 
Then, by defining the spaces ~1 (N), o~2 (N), o~ a (N) and a4(N ) (see fig. 4), we obtain 
the required relationships among the degeneracies A1, A2, A3 and A4, as shown in 
fig. 5. These relationships may be written succinctly as 
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o,,ù, i i I l l l ' " '  , , , ,  

~2,ù, I°1 III/tL ,,,"' 

~3,ù, o F I Itll 
Iol I I  I 

~4(N) I°l I l  [Il l 
I' N 

Fig. 4. These figures define % (N)-, % (N)-, a 3 (N)- and 
a ,  (N)-spaces tha t  are needed for the decompos i t ion  of  
the  degeneracies A~, A 2, A 3 and A«. It is unders tood  
tha t  the remaining 2 (N  - 1) sites may  or may  not  be 
occupied.  

o r  

where 

(ù2ù ù 1)( 
SU STU S ST 

SU S STU ST 
S 2 S2T S2T S2T 

QA = R- lA  , 

) (A1) /12 = R- 1 A2 
da Aa ' 

,4. A 4 

Q -  ( u  T) ( U  T) ( U  1~[2] S ® S S = S ST/ = Q ' 

(21) 

(22) 

where ® implies the Kronecker product and [21 the Kronecker square of  Q1. 
If we now construct a 2 x N  lattice from two l x N  lattices and allow both 

nearest- and next nearest-neighbor interaction between the two rows, we obtain 
(see fig. 6): 
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I ? I litt 
? I I~11 

I III, 

I ° I  , ,  , ,  

I I I  I f l l l l l l  
I o l l  1/11 I I 1 I 

t:111 Jll I', I I 

AI[N q, ln11, lnoo, 2n11, 2noo] 

: AI[N-1, q, ln11, ln00-3, 2n11, 2n00-2] 

+ A2[N-1, q, ln11, ln00-2, 2n11, 2n00-1] 

+ A3[N-1, q, ln11, ln00-2, 2n11, ln00-1] 

+ A4[N-1, q, ln11, ln00-1, 2n11, 2noo] 

Fig. 5 (a) 

o;II I ,~~,,, I~/I i I 

I t l l l  I I°I I I L i~,,,, 

[°1°1 I { I I ' " '  I 1 1 1  

°lot ] I Itll ' ' ' ' , , , ,  
o o  I I I I I  Ilol III, , , ,  , 

A2[N, q, ln11, lnoo, 2n11, 2noo] 

= AI[N-1, q- l ,  ln11, ln00-1, 2n11, 2n00-1] 

+ A2[N-1, q- l ,  ln11-1, ln00-1, 2n11, 2noo] 

+ A3[N-1, q- l ,  ln11, lnoo, 2n11-1, 2n00-1] 

+ A4[N-1, q- l ,  ln11-1, lnoo, 2n11-1, 2noo] 

Fig. 5(b) 
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I 

I1°1o II/l', ,,,'" 

Iolol Itl'"",,,,, 
o I I I I  Iolol I I Itl~,, i 

A3[N, q, ln11, lnoo, 2n11, 2n11] 

= AI[N-1, q- l ,  ln11, ln00-1, 2n11, 2noo] 

+ A2[N-1, q- l ,  ln11, lnoo, 2n11, 2noo] 

+ A3[N-1, q- l ,  ln11-1, ln00-1, 2n11, 2noo] 

+ A4[N-1, q- l ,  ln11-1, lnoo, 2n11,2noo] 

Fig. 5 (c) 

°l? I l t l l  
o - ,  Illl I 

Iol I I 

J:l°l IIl', r 
I o 1 1 1 1  
, o , o , , ,  r~~l 
Iolol I I I I I I Iolo,, ,  Il l , , ,  l i 

A«[N, q, ln11, lnoo, 2n11, 2noo] 

= AI[N-1, q-2, ln11-1, lnoo, 2n11, 2noo] 

+ A2[N-1, q-2, ln11-2, lnoo, 2n11-1, 2noo] 

+ A3[N-1, q-2, ln11-2, lnoo, 2n11-1, 2noo] 

= Ad[N-l, q-2, ln11-3, lnoo, 2n11-2, 2noo] 

Fig. 5(d) 

Fig. 5. These figures show the decomposition of the composite next nearest- 
neighbor degeneracies when there is no interaction between the 1 ×N strips. 
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I~1 I I II(I I I 
I~1 I I IJJl I I 

It l l  I 
It~1 I 

I I  

I ]  Itl' ' ' ' ' o I I I I I  

Iio°111 III " '  I I I  

AI[N, q, ln11, lnoo, 2n11, 2noo] 

= AI[N-1, q, ln11, lnoo -2, 2n11, 2noo] 

+ A2[N-1, q, ln11, ln00-1, 2n11, 2noo] 

+ A3[N-1, q, ln11, ln00-1, 2n11, 2noo] 

+ A4[N-1, q, ln11, lnoo, 2n11, 2noo] 

Fig. 6 (a) 

I°i ?] ]~~ , " I 

1 I 

toto I I I~~ I I I I 
I I I/Il I I 1 I 

Iol I I ]/Il I I I I 
I 1 ° 1 1  , , ! l l l  I I 

I°Io°I l , , , ,  

A2[N, q, ln11, lnoo, 2n11, 2noo] 

= AI[N-1, q- l ,  ln11, ln00-1, 2n11, 2noo] 

+ A2[N-1, q- l ,  ln11-1, ln00-1, 2n11, 2noo] 

+ A3[N-1, q- l ,  ln11, lnoo, 2n11, 21100] 

+A4[N-1, q- l ,  ln11-1, lnoo, 2n11,2noo] 

Fig. 6(b) 
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I I?1 I I Il l l I 
o ? 1  I I I~11 I 

I I I I  o , l , ,  II11 

I o 1 1 1  IIII I I 
ol I I I ]/11 I 

I°1°1 I I I I I I  

Iol I Illl I I 
o o  I II11 I I 

A3[N, q, ln11, lnoo, 2n11, 2n11] 

= AI[N-1, q- l ,  ln11, ln00-1, 2n11, 2n00-1] 

+ A2[N-1, q- l ,  ln11, lnoo, 2n11-1, 2n00-1] 

+ A3[N-1, q- l ,  ln11-1, ln00-1, 2n11, 2noo] 

+ A4[N-1, q- l ,  ln11-1, lnoo, 2nl l  -1, 2noo] 

Fig. 6(c) 

0 7  I Io/?~11 Il, I 
I o l l  I Itll I 
i o l j  i I/~l , 

,o,o, 'l~~J 
I ° 1 1  I 

I o 1 1 1  ll l l  1 I I 
o o l l  IIII I I I 

A4[N, q, ln11, ln00] 

= AI[N-1, q-2, ln11, lnoo, 2n11, 2noo] 

+ A2[N-1, q-2, ln11-1, lnoo, 2n11, 2noo] 

+ A3[N-1, q-2, ln11-1, lnoo, 2n11, 2noo] 

Iolol I i~~l ]j i i i i i = A4[N-1, q-2, 12, 2noo] Io lo i  I I I I ,n, ,noo,~n~l, 

Fig. 6(d) 

Fig. 6. These figures show the decomposition of the composite next nearest- 
neighbor degeneracies when nearest- and next nearest-neighbor interaction 
occurs between the 1 XN strips. 
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~~3w2 ~2w ~2w ~~(A1) (A1 
SUW STU SVW STV A2 = R- 1 A2 

~SUW SVW STU STV ] Aa A3 

~kS2T S2T2V S2T2V S2T3V2/] Aa A4 

(23) 

where V and W are the shift operators associated with 2nl l  and 2noo, respectively. 
Equation (23) may be written as 

Q2A = R - l A ,  (24) 

where 

B U 314 ,2 U 2 W U 2 W U 

= [ S U W  STU SVW STV i 
Q2 ~ SUW SVW S T e  STV I (25) 

~S z T S 2 T z V S = T 2 V S Œ T a V Z /  

Q 2 may be written as the Hadamard product  of two matfices, i.e., 

Q2 = P2 ® QI 2] ' (26) 

where 

UW UI¥ U 

1 VW 
e 2 = ( 2 7 )  

VW 1 

TV TV TV 

in which P2 can also be decomposed into the Hadamard product of two matrices, one 
of which depends on nearest-neighbor shift operators and the other on next nearest- 
neighbor shift operators, i.e., 

P2 = 1P2 6) 2Pz , (28) 

where 
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(i °° ° / 1 0 0 
1P2 =-- (29) 

0 1 0 

0 0 0 T l  

and where 2P2 

W IV 1 

1 WV V 
2P2 -= (30) 

WV 1 V 

V V V2/ 

That is, 1Pz describes the nearest-neighbor interaction between particles in one 1 x N  
lattice with particles in the other 1 xN lattice. Similarly, 2P2 describes the next 
nearest-neighbor interaction between particles of one row with the other. 

If  we continue the process by "adding" a 1 x N  lattice to a 2 x N  lattice to 
create a 3 x N  lattice, we obtain [by analogy with eq. (24)] : 

Q3A = R - l A ,  

where 

(31) 

! 

Q3 -= P3 q) Q1 ® Q2 , (32) 

! 
in which the matrix P3 is given by 

U~« 2 

UW 2 

W 

W t 

P3 =- 
IC 

I4: 

T 

T 

UW z UW UW UW UW U U 

UW 2 UW Utf UW UW U U 

W 1 1 VW VW V V 

W 1 1 VW VW V V 

W VW VW 1 1 V V 

W VW VW 1 1 V V 

T TV TV TV TV TV z TV 2 

T TV TV TV TV TV 2 TV ~ 

(33) 

Although P;  may be decomposed [in analogy with eq. (28)] into the Hadamard 
product of  two matrices, one of which depends on T and U only and the other on V 
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and W only, we will not do so as it is not germane to the following development. We 
observe only that 

P'3 = P2 N J2 ' 

where J2 = (11 11) (see, for example, ref. [35]). 
Thus, eq. (32) may be written 

Q3 = [P2 ® ']2 ] (9 {Q1 ® IP2 (9 (Q1 ® Q1 )]} 

= [e2 ® ]2] (9/Q1 ® IP2 (9 0121]} 

: [P2 ® ]2 ] (9 {IC2 (9 Q1 ] ® [P2 (9 Q[2]]} 

: [e~ ® s 2] (9 []2 ® e2] (9 0[ 31 , 

(34) 

(35) 

where we have used the fact that when V1 and I"3 as well as V2 and V4 are the same 
order 

(v, @ v~) (9 (v~ @ v«) = (v, (9 VB) @ (V~ (9 Vù), 

(the mixed product rule). 
Equation (35) may be written 

where 

(36) 

Q3 = P3 (9 Q[3]  (37) 

P3 =- [P2 @ J2 ] (9 [J2 ® P2 ] • 

To make the generalization manifest, we consider a 4 x N lattice: 

Q4 A = R -1A , 

where we combine a 1 x N lattice with a 3 x N  lattice 

t 

= P4 (9 Q1 ® 03 

= IP2 ® j~2]] (9 [Q1 ® Q3 ] 

= [P2 @ j~2]] (9 {Q1 ® [1°3 (9 QI 3] ]} 

Q4 

(38) 

(39) 
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= [P2 ® ./21211 @ {Q1 ® [(P2 ® "/2 ) @ ('/2 ® P2 ) ® Q{3]]} 

= [t'2 ® j~2l] ® {[J2 ® 0~1 ® [[P= ® J=] ® [J2 ® t'2] ® Q1311} 

= IP2 ® '/2[ 211 ® {'/2 ® [(P2 ® '/2) ® ('/2 ® P2 )] (é) 0[ 4]} 

= [P2 ® '/2[ 211 @ {['/2 (~) '/21 ® [P2 ® '/21 @ [J2 ® P2 ] ® 0[ 4]} 

= [P2 ®'/2 ®'/2] ® [J2 ® P= ®'/2 ] ® [J2 ®«2 ®P2 ] ® Q{4] 

= P4 ® Q[4] , (40) 

where 

3 3 
P4 = 1-~o 0 o~i], (41) 

i=1 1=i 

in which Il den®tes the Hadamard product and Il the Kronecker product, and where ® ® 

- IP2 i =] 
'/ J2 i rs~ 

Thus, for an M x N  space, ®ne may write by analogy with eqs. (25), (37) and 
(38), (40) and (41) 

QM A = R- 1 A , (42) 

where 

QM-- PM ® QI MI ' (43) 

in which 

M-1 M-1 
PM = 0 I--I ~i/' (44) ® 

/=1 i=1 

where 

{ P2 i = ] 
c~i/-- (45) 

J2 i 4:/" 
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Thus, QM may be considered as the Hadamard product of  two matrices, one 
of which, Q~M], is the matrix describing the M non-interacting 1 x N  strips and the 
other, PM, describes both the nearest- and next nearest-neighbor interaction of one 
1 x N  strip with its neighbor(s). 

It should be noted that when the next nearest-neighbor interacfion is tumed 
oft, i.e. when W = V = 1, eqs. (42), (43), (44) and (45) reduce to the equations appro- 
priate to the nearest-neighbor case. 

4. Conclusions 

The utility of the SOM method to treat two-dimension lattice statistics prob- 
lems has been discussed. The SOM has been determined for a system of simple, nearest- 
and next nearest-neighbor interacting particles distributed on an M x N  lattice space. 
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